Cargo binding activates myosin VIIA motor function in cells.

نویسندگان

  • Tsuyoshi Sakai
  • Nobuhisa Umeki
  • Reiko Ikebe
  • Mitsuo Ikebe
چکیده

Myosin VIIA, thought to be involved in human auditory function, is a gene responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Recent studies have suggested that it can move processively if it forms a dimer. Nevertheless, it exists as a monomer in vitro, unlike the well-known two-headed processive myosin Va. Here we studied the molecular mechanism, which is currently unknown, of activating myosin VIIA as a cargo-transporting motor. Human myosin VIIA was present throughout cytosol, but it moved to the tip of filopodia upon the formation of dimer induced by dimer-inducing reagent. The forced dimer of myosin VIIA translocated its cargo molecule, MyRip, to the tip of filopodia, whereas myosin VIIA without the forced dimer-forming module does not translocate to the filopodial tips. These results suggest that dimer formation of myosin VIIA is important for its cargo-transporting activity. On the other hand, myosin VIIA without the forced dimerization module became translocated to the filopodial tips in the presence of cargo complex, i.e., MyRip/Rab27a, and transported its cargo complex to the tip. Coexpression of MyRip promoted the association of myosin VIIA to vesicles and the dimer formation. These results suggest that association of myosin VIIA monomers with membrane via the MyRip/Rab27a complex facilitates the cargo-transporting activity of myosin VIIA, which is achieved by cluster formation on the membrane, where it possibly forms a dimer. Present findings support that MyRip, a cargo molecule, functions as an activator of myosin VIIA transporter function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va.

It is known that melanophilin is a myosin Va-targeting molecule that links myosin Va and the cargo vesicles in cells. Here we found that melanophilin directly activates the actin-activated ATPase activity of myosin Va and thus its motor activity. The actin-activated ATPase activity of the melanocyte-type myosin Va having exon-F was significantly activated by melanophilin by 4-fold. Although Rab...

متن کامل

Cargo recognition and cargo-mediated regulation of unconventional myosins.

Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by c...

متن کامل

Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B).

Myosin VIIA is a motor molecule with a conserved head domain and tail region unique to myosin VIIA, which probably defines its unique function in vivo. In an attempt to further characterize myosin VIIA function we set out to identify molecule(s) that specifically associate with it. We demonstrate that 17 and 55 kDa proteins from mouse kidney and cochlea co-purify with myosin VIIA on affinity co...

متن کامل

Multifunctional myosin VI has a multitude of cargoes.

I n humans, a vast array of cytoskeletal motor proteins (19 dyneins, 43 kinesins, and 39 myosins) (1) move along microtubule and actin filament tracks to generate an enormous range of cellular functions. The kinesin and dynein motor proteins drive long-distance transport along microtubules, whereas the myosins are responsible for short-range delivery along actin filaments (2). The myosin motor ...

متن کامل

Melanophilin Stimulates Myosin-5a Motor Function by Allosterically Inhibiting the Interaction between the Head and Tail of Myosin-5a

The tail-inhibition model is generally accepted for the regulation of myosin-5a motor function. Inhibited myosin-5a is in a folded conformation in which its globular tail domain (GTD) interacts with its head and inhibits its motor function, and high Ca(2+) or cargo binding may reduce the interaction between the GTD and the head of myosin-5a, thus activating motor activity. Although it is well e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 17  شماره 

صفحات  -

تاریخ انتشار 2011